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Introduction 
 

This article is about the process of creation of  an iOS based app for the digital emulation of the 
famous electronic synthesiser VCS3 by EMS using a Csound orchestra as sound engine.  Despite 
the out of standard features of the original instrument, we have attempted to clone a large 
amount of details regarding the sound generation, the connectivity, the look and its specific 
original ergonomy. We will try to illustrate the general synthesis strategies adopted in creating 
this musical synth application and  in particular, we will focus on Csound code of the main 
sound modules and their relative individual modeling approach. 

	
  
I. The origins of the project 

 
The recreation of a vintage sythesizer involves a lot of problems related to the difficulty in 
designing a virtual analog sound machine with digital means.  Each design approach cannot 
ignore that the main goal is to produce waveforms with extended frequency content while 
minimizing the side effects of aliasing artifacts. The first challenge was to realize a synthesis 
engine using as much as possible the original Csound opcodes library  maintaining a reasonable 
level of code complexity.  
The early attempts were made during a conservatory class exercize in the middle of 2007 using 
MacCsound frontend and already in that first implementation was also added to the sequencer 
module trying also to mimic the control interface (see fig.1) 
One of the strengths of the original EMS-VCS3 resides in the great potential offered by the 
matrix of connections compared to other machines, similar to what concerns the sound 
generation but much more simplified in regard to the general connectivity. 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
   	
  

Figure 1.  The early GUI of iVCS3 realized with MacCsound  (2007) 
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II. The sound generation engine 
 
As it was anticipated, the sound synthesis and controls has been designed with a Csound orchestra  
consisting of about 2200 lines of code including some comments. The orchestra includes the 
followings principal structuring elements: 28 instruments, 18 UDO custom opcodes, 13 macro 
definitions, 17 function tables, a 16 global audio variable vector, a 16x16 global control variable 
matrix and 12 general use global audio/control variable. 
We adopted CsoundQt frontend and Csound6  for develop and test each individual sound module.  
	
  
III. Modeling	
  the	
  VCS3	
  sound	
  modules	
  
	
  
The EMS VCS3 synth is essentially based on subtractive synthesis model that includes:  

• 2 wide range audio VCO (1Hz – 10 Khz) and one LFO VCO (0.025Hz – 500 Hz) plus a 
White Noise module as sound sources 

• a Ring Modulator unit 
• a VCF (Filter/Oscillator) unit with cut off frequency range from 5Hz to 10 Khz 
• an Envelope Shaper based on a trapezoid shape 
• a Spring Reverberation Unit 
• Input/Output amplifiers 
• the connections Matrix 

	
  
The	
   main	
   approach	
   taken	
   in	
   the	
   realization	
   of	
   the	
   sound	
   generation	
   has	
   been	
   to	
   use	
   a	
  
modeling	
   approach	
   based	
   mainly	
   on	
   the	
   effects	
   combined	
   with	
   a	
   high	
   coherence	
   of	
   the	
  
individual	
   parameter	
   range	
   and	
   consistency	
   of	
   all	
   the	
   external	
   user	
   parameters.	
   For	
   this	
  
reason,	
   we	
   have	
   spent	
   a	
   long	
   time	
   carefully	
   analyzing	
   the	
   profile	
   of	
   the	
   voltages	
   in	
   many	
  
patches	
  and	
   in	
  particular	
  by	
  analyzing	
   the	
  mapping	
  of	
   each	
  user	
  parameter	
   including	
   some	
  
known	
   idiosyncrasies	
  such	
  as	
  0.32	
  V/oct	
   for	
   the	
  equal	
   tempered	
  pitch	
  scale	
  or	
   the	
  negative	
  
performance	
  of	
  the	
  envelope	
  function.	
  
	
  
IV. The	
  Matrix	
  
 
To illustrate the methods used, the example below shows a small 4 x 4 matrix (see fig. 2) which 
communicates with Csound in a simple and safe way: through the ‘score message’. 
They have been implemented two versions: the first use the 'zak patch system' of Csound while the 
second (default) uses the pull mechanism to sum the audio (variable ‘a’) of the connections. The 
second version uses the 'Array Opcodes', introduced since Csound6. We could consider an array as 
N-mixer with N-channels, where the mixer and channel numbers depends from MATRIX_SIZE. In 
the example we will have 4 mixer to 4 channel, we can think the columns as the mixers and rows as 
the mixer channels. Every mixer produces the sum of own 4 channels, then are required 4 units of 
sum for each mixer. The matrix of the app iVCS3 is 16 x 16 and thus requires 16 additions, in this 
case also 16 multiplications are needed because each channel can be scaled according to the type of 
connecting pins on the matrix (white or green pins). In theory, when all connections in the matrix 
are active, we will have to calculate 32 operations for every mixer (16 sum + 16 mul) x 16 mixer, 
i.e. 512. We will see how the calculation is optimized to reduce CPU load . 
The UI is implemented in CoreGraphics, we have two delegates (callback) for the notification of 
connections and disconnections (pins). Through these two functions it is possible to activate and 
deactivate the Csound instrument which implements the matrix functions. 
The UI array (matrix) returns values in the range 0 ÷ 15 through the delegates. 
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Using the zak ystem the matrix communicates with Csound  through a ‘score message' in  order to 
activate (or deactivate) the 'matrix instrument' (i.e. instr 1). Practically, we activate N-instances for 
N-connections of 'matrix instrument'. 
The focus point is that the activation of Csound instrument, occurs with a fractional p1 (e.g instr 
1,000, instr 1,001, insert 1,015 etc.) according to the index of the matrix 
 
The activations happen in the Objective-C matrixConnected delegate method, please focus on the 
p1-field: 
 
;p1  p2 p3 p4 p5 
i 1.000  0  -1  0  0 
i 1.004  0  -1  1  0 
. 
i 1.015  0  -1  3  3 

 
The fractional p1 is the univocal reference to the activation number that we will use to turn off the 
instrument when is disconnecting a pin. 
 
In the example, p1 of 1.000 (i.e. 1,000) identifies the connection p4_0 in p5_0; 1.004 (i.e. 1,004)  
the connection p4_1 in p5_0 and 1.015 the p4_3 in p5_3. 
 

 
 
  
 
 
 
 
 
Note also that instr 1 is activated with a negative p3 which involves an infinite duration, In fact, this 
instrument performs the sums (and multiplication) of connections every ksmps, therefore it must 
remain active throughout the performance of Csound. 
 
To turn off the instrument (disconnect a pin), we need to call it, again with the instr num (i.e. 
fractional p1) used for activation but with  negative sign, this is done on the matrixUnconnect 
delegate: 
 
;p1  p2 p3 
i -1.000  0  0 
i -1.004  0  0 
. 
i -1.015  0  0 

 
For convenience, it was necessary to identify each connection on the cartesian axes X and Y, these 
values are expressed as p4 and p5 (i.e. Y and X axes). We may think that p4 is the channel number 
of the mixer p5. The values are calculated in the Objective-C matrixConnected delegate, as follows: 
 

Figure 2. A 4x4 example matrix 

Figure 3. Some matrix connections activated 
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int mixer   = pinNum % MATRIX_SIZE; 
int channel = pinNum / MATRIX_SIZE; 

 
To better understand the matrix, we need to focus on the first instrument (i.e. instr 1) and, for this 
specific case, on the USE_ZAK block. 
 
;------------------------------------------------------------ 
instr 1 ; MATRIX PATCHBOARD 
;------------------------------------------------------------ 
; Y = p4 Channel 
; X = p5 Mixer 
; p6 = 1 Matrix connected; 0 Matrix un-connected 
iChannelNumber init p4  
iMixerNumber init p5 
iMatrixState init p6 
 
#ifdef USE_ZAK 
 ain  zar  iChannelNumber 
 zawm ain, iMixerNumber + $MATRIX_SIZE, 1 
#else 
 
 gkMatrix[iMixerNumber][iChannelNumber] = iMatrixState 
 turnoff 
#end   
endin 

 
The instrument consists of a few lines of code but hides a fairly complex operation, we reads the 
zak memory from the p4 channel (iChannelNumber) which will is copied in the p5 + $ 
MATRIX_SIZE (iMixerNumber). 
The connections in the matrix, involve the consequent activation of the instrument 1 (in 
proportional numbers) which sums all the channels (rows) connected to the mixer (column), this 
operation is performed by the zawm opcode. 
 
Since we have an one-dimensional array, the offset $MATRIX_SIZE  assures the copy of the mixer 
master on the second part of the array: 
 
Indexes for reading the channels: 
0 ÷ $MATRIX_SIZE-1  
 
Indexes to write the mixer sum (master) 
$MATRIX_SIZE ÷ ($MATRIX_SIZE*2)-1 
 
Now, we understand why zak has been initialized with a twice value of $MATRIX_SIZE: 
 
zakinit  $MATRIX_SIZE*2, 1 

 
The mixer-master is accessible, for the instruments (such  ‘out L’, ‘out R’, reverb and flanger), 
through the GET_MIXER_MASTER UDO (i.e. User Defined Opcode). 
 
Please focus on the USE_ZAK block-code: 
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;------------------------------------------------- 
 opcode GET_MIXER_MASTER, a, i 
;------------------------------------------------- 
ichannel  xin 
 
#ifdef USE_ZAK 
ichannel += $MATRIX_SIZE 
 asum zar ichannel 
 zacl ichannel, ichannel 
#else 
aSumOfChannels = 0 
kndx = 0 
loop: 
 if (gkMatrix[ichannel][kndx] > 0) then 
  aSumOfChannels += gaMixer[kndx]; * gkMatrix[ichannel][kndx] 
 endif 
loop_lt kndx, 1, $MATRIX_SIZE, loop 
#end 
xout aSumOfChannels 
xout asum 
 endop 

 
For convenience the indexes are expressed in the range 0 to $MATRIX_SIZE-1, achieved by re-
introducing the offset as in the writing process, at last we clean the zacl array. 
 
Matrix with Array 
 
We employ two arrays: gaMixer (one-dimensional) and gkMatrix (two-dimensional) to send and 
receive the signals between the Orchestra's instruments. Both arrays are initialized with the 
maximum number of connections of the matrix (i.e. $MATRIX_SIZE ^ 2). 
 
gaMixer[] init $MATRIX_SIZE 
gkMatrix[][] init $MATRIX_SIZE, $MATRIX_SIZE 

 
The gkMatrix contains the state of the matrix and gaMixer contains the output signals of the 
instruments of the Orchestra. 
In this case the instrument (instr 1) perform one only task and, unlike the zak system, it must be 
turned off. from the matrix's delegates, we turn on the instrument for a minimum time in order to 
copy the status of the matrix in gkMatrix. The minimum time required is 1/kr (i.e. one ksmps block), 
which is enough to copy iMatrixState in gkMatrix. The vector indexes are the mixer (column p5) 
and channel (row p4). 
 
gkMatrix[iMixerNumber][iChannelNumber] = iMatrixState 
turnoff 

 
Unlike zak, the bulk of the work is done da GET_MIXER_MASTER, that performs a loop on all 
connected mixer channels (column), and accumulates them on aSumOfChannels variable.The 
construct 'if', it is necessary in order to optimize the performance since the unconnected channels 
are skipped. 
 
aSumOfChannels = 0 
kndx = 0 
loop: 
 if (gkMatrix[ichannel][kndx] > 0) then 
  aSumOfChannels += gaMixer[kndx] 
 endif 
loop_lt kndx, 1, $MATRIX_SIZE, loop 
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The instruments (such  ‘out L’, ‘out R’, reverb and flanger) that require the audio in input, will get 
the signal from the own mixer: 
 
instr 14; OUTPUT 
;receive signal from mixer 0 
inputSignal init 0 
aIn_L = GET_MIXER_MASTER(inputSignal) 
 
;receive signal from mixer 1 
inputSignal init 1 
aIn_R = GET_MIXER_MASTER(inputSignal) 
outs aIn_L, aIn_R 
endin 
 

For instance, by connecting both oscillators (1 sine and 2 saw) on the ‘Output R’  input slot, the 
aIn_R will contain the sum of the two oscillators (i.e. mixer-master 1). 
Concluding, in the zak case the mixer's channel accumulation are performed on the ‘matrix 
instrument’, while for the second case are performed by GET_MIXER_MASTER UDO. 
The zak system is more faster than the second case but less accurate, it is suitable only to convey 
the control signals (variable ‘k’). This second case is currently used for the iVCS3 app's 
implementations. 
	
  
V. The Sound Sources 
	
   	
  
In early stage of development we start to implement the ocillator starting from the BLIT (Band 
Limited Impulse Train) [1] [2] approach that essentially try to reproduce digitally the classical set of 
synth waveforms as a combination and integration over time of band limited impulse trains. The 
following lines illustrate this basic method: 

where kcps is the frequency, knh the maximum number of partials and kmul the multiplier in the 
series of amplitude coefficients that is reduced of  a factor of two when sine wave is selected. In 
figure 3 it can be seen  the clean spectrum of the ramp waveform at a 2 KHz fundamental pitch. 

	
  
 	
  

	
   	
  
	
  
	
  
	
  
	
  
	
  
	
  	
  
	
  

aBLIT_0 gbuzz .5, kcps, knh, 1, kmul, 1 ; generate band limited impulse train (BLIT) 
aBLIT_0_AC dcblock aBLIT_0   ; DC block it 
adel interp kpwm + kper_milli/2  ; convert k-rate to a-rate variable (PWM control) 
aBLIT_180 vdelay3 -aBLIT_0, adel, 1000 ; generate out of phase BLIT according to PWM 
aBLIT_180_AC dcblock aBLIT_180  ; DC block it  
aRAMP integ aBLIT_0_AC    ; generate RAMP via direct BLIT integration  
aSQUARE integ aBLIT_0_AC + aBLIT_180_AC ; Generate SQUARE via direct sum BLIT in and 
out of phase  
aTRI_0 integ 0.025 * aSQUARE   ; Generate TRIANGLE via integration of SQUARE  
aTRI_AC dcblock aTRI_0   ; DC block it  
aTRI balance aTRI_AC, aRAMP   ; Balance TRIANGLE wave amp with respect of RAMP  
 

Figure 4.  CsoundQt prototype test. Ramp waveform 
generated with the BLIT algorithm. Note the absence of 
aliased frequencies.  
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Despite the quick solution we noticed two different drawbacks. The first was some lack of  
bandwidth and other it is important to remember to say that in its digital reconstruction has tried to 
reproduce the most obvious characteristics and to mediate between different needs. The lack of 
waveform coherence at very low frequency (we remeber that the oscillators works also as 
modulation sources)  required us to using an hybrid approach with sampled waveform and the 
opcodes vco2ft and oscilikt together with an interpolation process. 
	
  
VI. The Ring Modulator and Reverberator 
 
These two units was designed in different ways and we decided to let the user choose between 
different alternatives and actually through the options you can choose which one to use.  
In digital world, the RM is implemented by a trivial multiplication between two audio signals but in 
the analog domain, things are a little more complicated.  In the original VCS3 the modulator is 
based on the Gilbert circuit whose transistors mismatches are responsible in circuit asymmetries and 
related spurious components that are generated for that reason.  Our implementation derives from 
the simplified digital approximation described by R.Hoffman-Burchardi and it essentially consists 
of a simple expression then includes the main non linearity (tanh) that derives from the circuit 
analysis. 
 

    where k1=k2=k3=k4 <= 0.01   
 
 
 
 
 
	
  
	
  
	
  
	
  

	
  
	
  
	
  
Another special feature of the VCS3 sound is  the well known spring reverberator.  In order to 
reproduce the characteristic howling metallic sound produced by the springs, we have been adopted 
also in this case several alternatives for its emulation but in this article we will present only one 
related to what looks like a physical modeling approach.  
This implementation of the spring reverb was loosely inspired by the model proposed by Parker [5].  
In this model, the impulse response presents a double sequence of  chirped echoes, the first below 
the frequency threshold of 5Khz and the second up to the entire audio band with different 
distribution of time arrivals of each group of components.  In order to create necessary dispersion of 
the frequencies and produce therefore the chirped signal, a first-order allpass filters have been 
connected in series. The output was further processed with unit delays and filtering to reproduce 
convincingly the original response. For this reason, the development of this module (as the other 
modules of the synthesizer) benefited from the easy way in which you can, using CsoundQt as fast 
prototyping tool, set and test each parameters to find and freeze into the target application. 

aCAR = tanh(aCAR_1) ; carrier shaped by a non linear function 
aRM_VCS3 = (aMOD + k1*aCAR) * (aCAR + k2*aMOD) + (k3 * aCAR) + (k4 * aMOD) 
aout = aRM_VCS3 
aout atone aout, 16 ; sub audio components hi-passed 

Figure 5. The two diagrams show the spectrum differences between a raw implementation and the digital 
emulation of the Gilbert circuits. Noticeable spurious frequencies appears inside the spectrum.  
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VII. The Filter 
	
  
The heart of every synthesizer is represented largely by the filter that is able to define his  
characteristic sound mark. In the case of VCS3 this statement is doubly true because the filter has 
some peculiarities that make it unique. It is important to say that in its digital reconstruction we 
have tried to reproduce the most obvious characteristics and to mediate between different needs. 
The main choice was to adopt the “moogladder” opcode based on the work of Antti Houvilainen 
[4].  
In some historical 'patch' (i.e. doopesheet) of musicians and engineers, we can understand many 
things about how it was used in this sense. With an high Resonance the filter produces a pseudo-
sinusoidal signal and may be used as FM module (i.e. FM Frequency Modulation). For instance, it 
could be used as carrier oscillator which is modulated through the cutoff parameter, or vice versa. 	
  
The Csound opcode used for the realization of the filter is the moogladder by Victor Lazzarini 
(based on the work of Antti Huovilainen). Our implementation simplifies and lightens the code 
eponymous UDO (always by Lazzarini). See the Resources for the download link of the UDO. 
From	
  this	
  base,	
  we	
  have	
  also	
  tried	
  to	
  develop	
  a	
  parametric	
  model	
  that	
  took	
  into	
  account	
  two	
  
characteristic	
   behaviors	
   of	
   the	
   device:	
   the	
   first	
   concerns	
   the	
   behavior	
   of	
   the	
   frequency	
  
response	
  when	
  the	
  resonance	
   is	
   increased	
  while the second concerns the transformation of the 
filter in a real oscillator when the resonance exceeds a certain threshold. These	
   two	
   behaviors	
  
were	
  implemented	
  by	
  simply	
  adding	
  a	
  high-­‐pass	
  filter	
  placed	
  in	
  series	
  and	
  an	
  sine	
  	
  oscillator	
  s	
  
with	
   frequency	
   equal	
   to	
   the	
   cut-­‐off	
   actual	
   frequency	
   and	
   with	
   amplitude	
   controlled	
   by	
   a	
  
function	
  dependent	
  on	
  the	
  amount	
  of	
  resonance.  

 
 
 
 
 
 
 

aAP_1  alpass ainput, irvt, idel ; chirp filter dispersion section start 
.    . 
.    . 
aAP_7  alpass aAP_6, irvt, idel 
aAP_8  alpass aAP_7, irvt, idel ; chirp filter dispersion section end 
; 
aAP_DEL   delay aAP_8, 0.059 ; 59 ms is the VCS3 reverb pulse repetition 
aSPRING_LOW_SEC tonex aAP_DEL, iFC-500, 8  
aSPRING_DIFFUSE nreverb aSPRING_LOW_SEC, 4, 0.15 
aSPRING_HI    atonex aAP_DEL, iFC, 3 
aSPRING_HI_DEL delay aSPRING_HI, 0.002 
 
aSPRING_HI_SEC  = aSPRING_DIFFUSE*0.2 + aSPRING_HI_DEL 
arev    = (aSPRING_LOW_SEC + aSPRING_HI_SEC*0.3) * 2.0 

ares   interp kres  ; Change k-rate resonance value  into a-rate variable 
amp_exp tablei ares, 7, 1  ; Scale auxiliary whistle oscillator amp with kres 
       ; value (table 97)  
aosc oscil ireson_OSC_amp*amp_exp, acut, 6 ; generate aux whistle  
aHP atone afil, acut_glide    ; 1st order hi-pass filter 
aFILMIX = aHP * ares + afil * (1-ares)  ; cross-fade of moogladder and HP  
afil =  (0.72 - amp_exp) * aFILMIX  + aosc ; add oscillator (aosc)  

Figure 6. Frequency responce of the VCF with cutoff at 2.5 Khz and no resonance at all (left) and medium 
resonance (right). Notice the hi-pass effect on the left sido of the spectrum. 
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VIII. The Envelope Shaper 
	
  
The implementation of the Envelope Shaper module has demanded us a very accurate phase of 
analysis and study, In fact, the features of this module, as you can see from the figures 8 and 9, are 
not usual and inherently hide a series of difficult behavior (expensive) to implement it.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Frequency responce of the VCF with cutoff at 2.5 Khz and hi resonance (left) and very hi resonance 
(right). Notice the hi-pass effect on the left side and the morphing into a real oscillator responce with a certain 
amount of  related harmonics.  

Figure 8. VCS3 Basic envelope (Trapezoid)  

Figure 9. Self triggered envelope.  

Figure 10. Envelope re-trigger when it is in Attack phase: the Attack phase will 
continue from the current voltage it had when triggering. 
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When you trigger the Envelope from either keyboard or ATTACK button, the Envelope always 
goes to the Attack phase of the Envelope, but it will begin from the current vaulue. Once released 
the key or ATTACK button, the Envelope continues from the end of the Attack phase so it will go 
to the On (steady state), and then Decay and Off. 
The Envelope Shaper is a particularly important module of VCS3, which deserves particular 
attention. The Csound code is based on the UDO, the implementation needs a strong use of controls 
on the audio variables ‘a' and the UDO architecture makes it possible, since it allows to set the local 
ksmps to 1. Infact when ksmps is set to one, the variables 'k' and 'a' are sampled with the highest rate 
(i.e. sampling rate), unfortunatley this approach is devastating from the point of view of the CPU 
load, because of the heavy overhead of function calls that is introduced. This implementation did 
not allow to run the app on first generation devices, such iPad 1, 2.  
See the Resources for the download link of the Csound resources for this text, and focus on the 
EnvelopeApe UDO in the VCS3_Envelope.csd file. 
 
To overcome this limitation, we had to implement the Envelope, 'outside of Csound' and add a new 
opcode to the list of opcodes with the following Csound API: 
 
    /* Append External Csound Opcodes */ 
    csoundAppendOpcode(cs, "VCS3Envelope", sizeof(VCS3ENVELOPE_OPCODE), 
                        0, 3, "a", "kkkkk",  
    iVCS3Envelope,  
    kVCS3Envelope,  
    aVCS3Envelope); 
 

At the moment the VCS3Envelope code is a simple adjustment to the language 'C' of  Csound UDO 
that it might to be optimized in the next iVCS3 updates. 
 

Figure 11.  Envelope re-trigger when it is at the Decay phase. The instant you re-trig the envelope with the keyboard 
(or ATTACK button), it will finish the Attack phase from the current voltage value and then it will stay at full 
amplitude until you release the key (or button). 

Figure 12. The first gate is the same as fig. B, but now notice the second gate behaviour: since the envelope is at 
full Voltage (still at hold phase) when you push the key/ATTACK, there will be not a ‘retrigger' for the Attack 
but the Voltage will hold for as long as you keep the key/ATTACK pressed. Gate 3 is the same as fig A. 
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IX. Voltage to Amplitude Mapping 
	
  
To make the emulator as close as possible to the original, all the audio signals of the various 
modules have been "tuned" according to the amplitudes of the original. Using the standard digital 
normalized range we have to consider the values in the range -1 to 1 and all the signals have been 
amplified or attenuated according to the voltages in volts of the original VCS3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As we can see from the figure 13 (from the original VCS3 manual), the maximum value of the AC 
voltage is 6 Vp-p. Therefore the value of 'peak' is 3, since the emulator's digital audio modules 
return normalized values in the range -1 to 1, the attenuation/amplification factor is calculated in 
Csound as follow: 
 
#define  MAX_VOLT_REF #3.0#  
instr 11 ; VCO 1 
//… 
 /* Max. Out. 3V p-p  ossia 3/2 = 1.5V peak*/ 
 iampSine init 1.5 / $MAX_VOLT_REF 
  
 /* Max. Out. 4V p-p  ossia 4/2 = 2V peak */ 
 iampSaw init -2 / $MAX_VOLT_REF 
//… 
endin 

 
For what concerns the input signals, instead: 
 
iVoltPerOctave init -0.32 / $MAX_VOLT_REF 

 
In the example of the VCO 1, the 0.32 value refers to the sensitivity in Volts per octave. It means 
that summing 0.32 Volt at the frequency value in Volt of the VCO, we will produce a octave-up and 
subtracting it we will produce an octave below. The negative sign (-0.32) is justified by the fact that 
the VCA (i.e. Voltage-controlled amplifier) modules of the VCS3 produce a reverse current. 
Finally, the POWEROFTWO (UDO) calculates the factor to raise/lower in frequency according to 
the Volt amount. 
 
apower POWOFTWO aControlIn/iVoltPerOctave ; 2ˆ(aControlIn/iVoltPerOctave) 
acps   mac kcps, apower 
 

All of these details make the emulator very close to the original, in terms of  “playability” and 
feedback. 

Figure 13. Original VCS3 oscillators / filter  voltages (Vpp) vs. 
frequency reference and sensitivity (V/octave) 
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X. Knobs 
 
For the programming the Knobs, has been reserved the maximum attention to the non-linearity of 
the original VCS3 machine. Every widget was designed to follow finely the curve according to the 
voltages of the original that, in some cases, becomes particularly discontinuously. Since the 
standard math shapes as exponential or logarithm, they could not adequately approximate the 
original curve, it was decided to use the technique table look-up. 
In this modus-operandi, the values of the Knobs are used as indexes of tables to 11 points, the tables 
are filled at compile-time with 11 values (samples) measured on the original machine. Intermediate 
values are obtained through a process of linear interpolation. 
The algorithm is easily solvable in Csound environment, using the tables (gen 2) and the opcode 
tablei which serve to read the interpolated values as a function of an index. However, we wanted to 
keep a correspondence with the absolute values of the UI (ie user interface) and for this reason, it 
was necessary to implements the feature in Objective-C. 
 
Below, an example from the Decay Knob of the Envelope module, please observe the discontinuity 
values of this parameter: 
 
/* Real VCS3 Values for Envelope Decay */ 
[_Decay setTableCurve:0.007 forIndex:0]; 
[_Decay setTableCurve:0.010 forIndex:1]; 
[_Decay setTableCurve:0.028 forIndex:2]; 
[_Decay setTableCurve:0.116 forIndex:3]; 
[_Decay setTableCurve:0.425 forIndex:4]; 
[_Decay setTableCurve:1.600 forIndex:5]; 
[_Decay setTableCurve:4.400 forIndex:6]; 
[_Decay setTableCurve:7.500 forIndex:7]; 
[_Decay setTableCurve:9.500 forIndex:8]; 
[_Decay setTableCurve:11.000 forIndex:9]; 
[_Decay setTableCurve:15.00000 forIndex:10]; 

 
Therefore, the function for the interpolation calculation: 
 
-(float)valueFromIndex:(float)phi { 
     
    //Linear Interpolation (two points) 
    short index = (short) phi; 
    float dif = phi - (float) index; 
    float sample1 = _tableCurve[index]; 
    float sample2 = _tableCurve[index + 1]; 
    float RESULT = sample1 + (sample2 - sample1) * dif; 
     
    return RESULT; 
} 

 
This approach provides an additional level of optimization, in fact the interpolations are calculated 
as a result of a user action on the Knob. The mechanism is known as 'event-driven programming’, a 
delegate-function (callback) is called only if necessary, unlike Csound that continuously performs a 
pull over the control (i.e. ‘k') variables. 
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Figura	
  14.	
  Two	
  screenshots	
  that	
  show	
  all	
  the	
  controls	
  on	
  the	
  front	
  panel	
  of	
  the	
  iVCS3.	
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XI. Conclusions 
	
  
The  experience of emulate a vintage synth using the standard Csound opcodes (and the good 
performance in terms of number of the app downloads) shows the power of Csound as an incredible 
sound development tool not only for experimental and didactical purpose but also for semi-
professional and professional use.  
This experience also showed again that the success of the emulation of a music machine depends in 
large part from the good synergy between the various modules and control parameters, even greater 
extent the exact reconstruction of each individual component. In addition, the programming style of 
Csound accelerates the adaptation of the various modules to the more general context that 
characterizes the environment and development tools for iOS system applications.  
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