
	
 1	

Csound Synthesis Approach for the iVCS3 iOS App
Eugenio Giordani(*) – Alessandro Petrolati(**)

(*)LEMS

Laboratorio Elettronico per la Musica Sperimentale
Conservatory of Music G. Rossini – Pesaro - Italy

(**)apeSoft
	

Introduction

This article is about the process of creation of an iOS based app for the digital emulation of the
famous electronic synthesiser VCS3 by EMS using a Csound orchestra as sound engine. Despite
the out of standard features of the original instrument, we have attempted to clone a large
amount of details regarding the sound generation, the connectivity, the look and its specific
original ergonomy. We will try to illustrate the general synthesis strategies adopted in creating
this musical synth application and in particular, we will focus on Csound code of the main
sound modules and their relative individual modeling approach.

	

I. The origins of the project

The recreation of a vintage sythesizer involves a lot of problems related to the difficulty in
designing a virtual analog sound machine with digital means. Each design approach cannot
ignore that the main goal is to produce waveforms with extended frequency content while
minimizing the side effects of aliasing artifacts. The first challenge was to realize a synthesis
engine using as much as possible the original Csound opcodes library maintaining a reasonable
level of code complexity.
The early attempts were made during a conservatory class exercize in the middle of 2007 using
MacCsound frontend and already in that first implementation was also added to the sequencer
module trying also to mimic the control interface (see fig.1)
One of the strengths of the original EMS-VCS3 resides in the great potential offered by the
matrix of connections compared to other machines, similar to what concerns the sound
generation but much more simplified in regard to the general connectivity.
	

	

	

	

	

	

	

	

	

	

	

	

	

	
 	

Figure 1. The early GUI of iVCS3 realized with MacCsound (2007)

	
 2	

	

II. The sound generation engine

As it was anticipated, the sound synthesis and controls has been designed with a Csound orchestra
consisting of about 2200 lines of code including some comments. The orchestra includes the
followings principal structuring elements: 28 instruments, 18 UDO custom opcodes, 13 macro
definitions, 17 function tables, a 16 global audio variable vector, a 16x16 global control variable
matrix and 12 general use global audio/control variable.
We adopted CsoundQt frontend and Csound6 for develop and test each individual sound module.
	

III. Modeling	
 the	
 VCS3	
 sound	
 modules	

	

The EMS VCS3 synth is essentially based on subtractive synthesis model that includes:

• 2 wide range audio VCO (1Hz – 10 Khz) and one LFO VCO (0.025Hz – 500 Hz) plus a
White Noise module as sound sources

• a Ring Modulator unit
• a VCF (Filter/Oscillator) unit with cut off frequency range from 5Hz to 10 Khz
• an Envelope Shaper based on a trapezoid shape
• a Spring Reverberation Unit
• Input/Output amplifiers
• the connections Matrix

	

The	
 main	
 approach	
 taken	
 in	
 the	
 realization	
 of	
 the	
 sound	
 generation	
 has	
 been	
 to	
 use	
 a	

modeling	
 approach	
 based	
 mainly	
 on	
 the	
 effects	
 combined	
 with	
 a	
 high	
 coherence	
 of	
 the	

individual	
 parameter	
 range	
 and	
 consistency	
 of	
 all	
 the	
 external	
 user	
 parameters.	
 For	
 this	

reason,	
 we	
 have	
 spent	
 a	
 long	
 time	
 carefully	
 analyzing	
 the	
 profile	
 of	
 the	
 voltages	
 in	
 many	

patches	
 and	
 in	
 particular	
 by	
 analyzing	
 the	
 mapping	
 of	
 each	
 user	
 parameter	
 including	
 some	

known	
 idiosyncrasies	
 such	
 as	
 0.32	
 V/oct	
 for	
 the	
 equal	
 tempered	
 pitch	
 scale	
 or	
 the	
 negative	

performance	
 of	
 the	
 envelope	
 function.	

	

IV. The	
 Matrix	

To illustrate the methods used, the example below shows a small 4 x 4 matrix (see fig. 2) which
communicates with Csound in a simple and safe way: through the ‘score message’.
They have been implemented two versions: the first use the 'zak patch system' of Csound while the
second (default) uses the pull mechanism to sum the audio (variable ‘a’) of the connections. The
second version uses the 'Array Opcodes', introduced since Csound6. We could consider an array as
N-mixer with N-channels, where the mixer and channel numbers depends from MATRIX_SIZE. In
the example we will have 4 mixer to 4 channel, we can think the columns as the mixers and rows as
the mixer channels. Every mixer produces the sum of own 4 channels, then are required 4 units of
sum for each mixer. The matrix of the app iVCS3 is 16 x 16 and thus requires 16 additions, in this
case also 16 multiplications are needed because each channel can be scaled according to the type of
connecting pins on the matrix (white or green pins). In theory, when all connections in the matrix
are active, we will have to calculate 32 operations for every mixer (16 sum + 16 mul) x 16 mixer,
i.e. 512. We will see how the calculation is optimized to reduce CPU load .
The UI is implemented in CoreGraphics, we have two delegates (callback) for the notification of
connections and disconnections (pins). Through these two functions it is possible to activate and
deactivate the Csound instrument which implements the matrix functions.
The UI array (matrix) returns values in the range 0 ÷ 15 through the delegates.

	
 3	

Using the zak ystem the matrix communicates with Csound through a ‘score message' in order to
activate (or deactivate) the 'matrix instrument' (i.e. instr 1). Practically, we activate N-instances for
N-connections of 'matrix instrument'.
The focus point is that the activation of Csound instrument, occurs with a fractional p1 (e.g instr
1,000, instr 1,001, insert 1,015 etc.) according to the index of the matrix

The activations happen in the Objective-C matrixConnected delegate method, please focus on the
p1-field:

;p1 p2 p3 p4 p5
i 1.000 0 -1 0 0
i 1.004 0 -1 1 0
.
i 1.015 0 -1 3 3

The fractional p1 is the univocal reference to the activation number that we will use to turn off the
instrument when is disconnecting a pin.

In the example, p1 of 1.000 (i.e. 1,000) identifies the connection p4_0 in p5_0; 1.004 (i.e. 1,004)
the connection p4_1 in p5_0 and 1.015 the p4_3 in p5_3.

Note also that instr 1 is activated with a negative p3 which involves an infinite duration, In fact, this
instrument performs the sums (and multiplication) of connections every ksmps, therefore it must
remain active throughout the performance of Csound.

To turn off the instrument (disconnect a pin), we need to call it, again with the instr num (i.e.
fractional p1) used for activation but with negative sign, this is done on the matrixUnconnect
delegate:

;p1 p2 p3
i -1.000 0 0
i -1.004 0 0
.
i -1.015 0 0

For convenience, it was necessary to identify each connection on the cartesian axes X and Y, these
values are expressed as p4 and p5 (i.e. Y and X axes). We may think that p4 is the channel number
of the mixer p5. The values are calculated in the Objective-C matrixConnected delegate, as follows:

Figure 2. A 4x4 example matrix

Figure 3. Some matrix connections activated

	
 4	

int mixer = pinNum % MATRIX_SIZE;
int channel = pinNum / MATRIX_SIZE;

To better understand the matrix, we need to focus on the first instrument (i.e. instr 1) and, for this
specific case, on the USE_ZAK block.

;--
instr 1 ; MATRIX PATCHBOARD
;--
; Y = p4 Channel
; X = p5 Mixer
; p6 = 1 Matrix connected; 0 Matrix un-connected
iChannelNumber init p4
iMixerNumber init p5
iMatrixState init p6

#ifdef USE_ZAK
 ain zar iChannelNumber
 zawm ain, iMixerNumber + $MATRIX_SIZE, 1
#else

 gkMatrix[iMixerNumber][iChannelNumber] = iMatrixState
 turnoff
#end
endin

The instrument consists of a few lines of code but hides a fairly complex operation, we reads the
zak memory from the p4 channel (iChannelNumber) which will is copied in the p5 + $
MATRIX_SIZE (iMixerNumber).
The connections in the matrix, involve the consequent activation of the instrument 1 (in
proportional numbers) which sums all the channels (rows) connected to the mixer (column), this
operation is performed by the zawm opcode.

Since we have an one-dimensional array, the offset $MATRIX_SIZE assures the copy of the mixer
master on the second part of the array:

Indexes for reading the channels:
0 ÷ $MATRIX_SIZE-1

Indexes to write the mixer sum (master)
$MATRIX_SIZE ÷ ($MATRIX_SIZE*2)-1

Now, we understand why zak has been initialized with a twice value of $MATRIX_SIZE:

zakinit $MATRIX_SIZE*2, 1

The mixer-master is accessible, for the instruments (such ‘out L’, ‘out R’, reverb and flanger),
through the GET_MIXER_MASTER UDO (i.e. User Defined Opcode).

Please focus on the USE_ZAK block-code:

	
 5	

;---
 opcode GET_MIXER_MASTER, a, i
;---
ichannel xin

#ifdef USE_ZAK
ichannel += $MATRIX_SIZE
 asum zar ichannel
 zacl ichannel, ichannel
#else
aSumOfChannels = 0
kndx = 0
loop:
 if (gkMatrix[ichannel][kndx] > 0) then
 aSumOfChannels += gaMixer[kndx]; * gkMatrix[ichannel][kndx]
 endif
loop_lt kndx, 1, $MATRIX_SIZE, loop
#end
xout aSumOfChannels
xout asum
 endop

For convenience the indexes are expressed in the range 0 to $MATRIX_SIZE-1, achieved by re-
introducing the offset as in the writing process, at last we clean the zacl array.

Matrix with Array

We employ two arrays: gaMixer (one-dimensional) and gkMatrix (two-dimensional) to send and
receive the signals between the Orchestra's instruments. Both arrays are initialized with the
maximum number of connections of the matrix (i.e. $MATRIX_SIZE ^ 2).

gaMixer[] init $MATRIX_SIZE
gkMatrix[][] init $MATRIX_SIZE, $MATRIX_SIZE

The gkMatrix contains the state of the matrix and gaMixer contains the output signals of the
instruments of the Orchestra.
In this case the instrument (instr 1) perform one only task and, unlike the zak system, it must be
turned off. from the matrix's delegates, we turn on the instrument for a minimum time in order to
copy the status of the matrix in gkMatrix. The minimum time required is 1/kr (i.e. one ksmps block),
which is enough to copy iMatrixState in gkMatrix. The vector indexes are the mixer (column p5)
and channel (row p4).

gkMatrix[iMixerNumber][iChannelNumber] = iMatrixState
turnoff

Unlike zak, the bulk of the work is done da GET_MIXER_MASTER, that performs a loop on all
connected mixer channels (column), and accumulates them on aSumOfChannels variable.The
construct 'if', it is necessary in order to optimize the performance since the unconnected channels
are skipped.

aSumOfChannels = 0
kndx = 0
loop:
 if (gkMatrix[ichannel][kndx] > 0) then
 aSumOfChannels += gaMixer[kndx]
 endif
loop_lt kndx, 1, $MATRIX_SIZE, loop

	
 6	

The instruments (such ‘out L’, ‘out R’, reverb and flanger) that require the audio in input, will get
the signal from the own mixer:

instr 14; OUTPUT
;receive signal from mixer 0
inputSignal init 0
aIn_L = GET_MIXER_MASTER(inputSignal)

;receive signal from mixer 1
inputSignal init 1
aIn_R = GET_MIXER_MASTER(inputSignal)
outs aIn_L, aIn_R
endin

For instance, by connecting both oscillators (1 sine and 2 saw) on the ‘Output R’ input slot, the
aIn_R will contain the sum of the two oscillators (i.e. mixer-master 1).
Concluding, in the zak case the mixer's channel accumulation are performed on the ‘matrix
instrument’, while for the second case are performed by GET_MIXER_MASTER UDO.
The zak system is more faster than the second case but less accurate, it is suitable only to convey
the control signals (variable ‘k’). This second case is currently used for the iVCS3 app's
implementations.
	

V. The Sound Sources
	
 	

In early stage of development we start to implement the ocillator starting from the BLIT (Band
Limited Impulse Train) [1] [2] approach that essentially try to reproduce digitally the classical set of
synth waveforms as a combination and integration over time of band limited impulse trains. The
following lines illustrate this basic method:

where kcps is the frequency, knh the maximum number of partials and kmul the multiplier in the
series of amplitude coefficients that is reduced of a factor of two when sine wave is selected. In
figure 3 it can be seen the clean spectrum of the ramp waveform at a 2 KHz fundamental pitch.

	

 	

	
 	

	

	

	

	

	

	
 	

	

aBLIT_0 gbuzz .5, kcps, knh, 1, kmul, 1 ; generate band limited impulse train (BLIT)
aBLIT_0_AC dcblock aBLIT_0 ; DC block it
adel interp kpwm + kper_milli/2 ; convert k-rate to a-rate variable (PWM control)
aBLIT_180 vdelay3 -aBLIT_0, adel, 1000 ; generate out of phase BLIT according to PWM
aBLIT_180_AC dcblock aBLIT_180 ; DC block it
aRAMP integ aBLIT_0_AC ; generate RAMP via direct BLIT integration
aSQUARE integ aBLIT_0_AC + aBLIT_180_AC ; Generate SQUARE via direct sum BLIT in and
out of phase
aTRI_0 integ 0.025 * aSQUARE ; Generate TRIANGLE via integration of SQUARE
aTRI_AC dcblock aTRI_0 ; DC block it
aTRI balance aTRI_AC, aRAMP ; Balance TRIANGLE wave amp with respect of RAMP

Figure 4. CsoundQt prototype test. Ramp waveform
generated with the BLIT algorithm. Note the absence of
aliased frequencies.

	
 7	

	

	

Despite the quick solution we noticed two different drawbacks. The first was some lack of
bandwidth and other it is important to remember to say that in its digital reconstruction has tried to
reproduce the most obvious characteristics and to mediate between different needs. The lack of
waveform coherence at very low frequency (we remeber that the oscillators works also as
modulation sources) required us to using an hybrid approach with sampled waveform and the
opcodes vco2ft and oscilikt together with an interpolation process.
	

VI. The Ring Modulator and Reverberator

These two units was designed in different ways and we decided to let the user choose between
different alternatives and actually through the options you can choose which one to use.
In digital world, the RM is implemented by a trivial multiplication between two audio signals but in
the analog domain, things are a little more complicated. In the original VCS3 the modulator is
based on the Gilbert circuit whose transistors mismatches are responsible in circuit asymmetries and
related spurious components that are generated for that reason. Our implementation derives from
the simplified digital approximation described by R.Hoffman-Burchardi and it essentially consists
of a simple expression then includes the main non linearity (tanh) that derives from the circuit
analysis.

 where k1=k2=k3=k4 <= 0.01

	

	

	

	

	

	

	

Another special feature of the VCS3 sound is the well known spring reverberator. In order to
reproduce the characteristic howling metallic sound produced by the springs, we have been adopted
also in this case several alternatives for its emulation but in this article we will present only one
related to what looks like a physical modeling approach.
This implementation of the spring reverb was loosely inspired by the model proposed by Parker [5].
In this model, the impulse response presents a double sequence of chirped echoes, the first below
the frequency threshold of 5Khz and the second up to the entire audio band with different
distribution of time arrivals of each group of components. In order to create necessary dispersion of
the frequencies and produce therefore the chirped signal, a first-order allpass filters have been
connected in series. The output was further processed with unit delays and filtering to reproduce
convincingly the original response. For this reason, the development of this module (as the other
modules of the synthesizer) benefited from the easy way in which you can, using CsoundQt as fast
prototyping tool, set and test each parameters to find and freeze into the target application.

aCAR = tanh(aCAR_1) ; carrier shaped by a non linear function
aRM_VCS3 = (aMOD + k1*aCAR) * (aCAR + k2*aMOD) + (k3 * aCAR) + (k4 * aMOD)
aout = aRM_VCS3
aout atone aout, 16 ; sub audio components hi-passed

Figure 5. The two diagrams show the spectrum differences between a raw implementation and the digital
emulation of the Gilbert circuits. Noticeable spurious frequencies appears inside the spectrum.

	
 8	

	
 	

VII. The Filter
	

The heart of every synthesizer is represented largely by the filter that is able to define his
characteristic sound mark. In the case of VCS3 this statement is doubly true because the filter has
some peculiarities that make it unique. It is important to say that in its digital reconstruction we
have tried to reproduce the most obvious characteristics and to mediate between different needs.
The main choice was to adopt the “moogladder” opcode based on the work of Antti Houvilainen
[4].
In some historical 'patch' (i.e. doopesheet) of musicians and engineers, we can understand many
things about how it was used in this sense. With an high Resonance the filter produces a pseudo-
sinusoidal signal and may be used as FM module (i.e. FM Frequency Modulation). For instance, it
could be used as carrier oscillator which is modulated through the cutoff parameter, or vice versa. 	

The Csound opcode used for the realization of the filter is the moogladder by Victor Lazzarini
(based on the work of Antti Huovilainen). Our implementation simplifies and lightens the code
eponymous UDO (always by Lazzarini). See the Resources for the download link of the UDO.
From	
 this	
 base,	
 we	
 have	
 also	
 tried	
 to	
 develop	
 a	
 parametric	
 model	
 that	
 took	
 into	
 account	
 two	

characteristic	
 behaviors	
 of	
 the	
 device:	
 the	
 first	
 concerns	
 the	
 behavior	
 of	
 the	
 frequency	

response	
 when	
 the	
 resonance	
 is	
 increased	
 while the second concerns the transformation of the
filter in a real oscillator when the resonance exceeds a certain threshold. These	
 two	
 behaviors	

were	
 implemented	
 by	
 simply	
 adding	
 a	
 high-­‐pass	
 filter	
 placed	
 in	
 series	
 and	
 an	
 sine	
 	
 oscillator	
 s	

with	
 frequency	
 equal	
 to	
 the	
 cut-­‐off	
 actual	
 frequency	
 and	
 with	
 amplitude	
 controlled	
 by	
 a	

function	
 dependent	
 on	
 the	
 amount	
 of	
 resonance.

aAP_1 alpass ainput, irvt, idel ; chirp filter dispersion section start
. .
. .
aAP_7 alpass aAP_6, irvt, idel
aAP_8 alpass aAP_7, irvt, idel ; chirp filter dispersion section end
;
aAP_DEL delay aAP_8, 0.059 ; 59 ms is the VCS3 reverb pulse repetition
aSPRING_LOW_SEC tonex aAP_DEL, iFC-500, 8
aSPRING_DIFFUSE nreverb aSPRING_LOW_SEC, 4, 0.15
aSPRING_HI atonex aAP_DEL, iFC, 3
aSPRING_HI_DEL delay aSPRING_HI, 0.002

aSPRING_HI_SEC = aSPRING_DIFFUSE*0.2 + aSPRING_HI_DEL
arev = (aSPRING_LOW_SEC + aSPRING_HI_SEC*0.3) * 2.0

ares interp kres ; Change k-rate resonance value into a-rate variable
amp_exp tablei ares, 7, 1 ; Scale auxiliary whistle oscillator amp with kres
 ; value (table 97)
aosc oscil ireson_OSC_amp*amp_exp, acut, 6 ; generate aux whistle
aHP atone afil, acut_glide ; 1st order hi-pass filter
aFILMIX = aHP * ares + afil * (1-ares) ; cross-fade of moogladder and HP
afil = (0.72 - amp_exp) * aFILMIX + aosc ; add oscillator (aosc)

Figure 6. Frequency responce of the VCF with cutoff at 2.5 Khz and no resonance at all (left) and medium
resonance (right). Notice the hi-pass effect on the left sido of the spectrum.

	
 9	

	

	

VIII. The Envelope Shaper
	

The implementation of the Envelope Shaper module has demanded us a very accurate phase of
analysis and study, In fact, the features of this module, as you can see from the figures 8 and 9, are
not usual and inherently hide a series of difficult behavior (expensive) to implement it.

Figure 7. Frequency responce of the VCF with cutoff at 2.5 Khz and hi resonance (left) and very hi resonance
(right). Notice the hi-pass effect on the left side and the morphing into a real oscillator responce with a certain
amount of related harmonics.

Figure 8. VCS3 Basic envelope (Trapezoid)

Figure 9. Self triggered envelope.

Figure 10. Envelope re-trigger when it is in Attack phase: the Attack phase will
continue from the current voltage it had when triggering.

	
 10	

When you trigger the Envelope from either keyboard or ATTACK button, the Envelope always
goes to the Attack phase of the Envelope, but it will begin from the current vaulue. Once released
the key or ATTACK button, the Envelope continues from the end of the Attack phase so it will go
to the On (steady state), and then Decay and Off.
The Envelope Shaper is a particularly important module of VCS3, which deserves particular
attention. The Csound code is based on the UDO, the implementation needs a strong use of controls
on the audio variables ‘a' and the UDO architecture makes it possible, since it allows to set the local
ksmps to 1. Infact when ksmps is set to one, the variables 'k' and 'a' are sampled with the highest rate
(i.e. sampling rate), unfortunatley this approach is devastating from the point of view of the CPU
load, because of the heavy overhead of function calls that is introduced. This implementation did
not allow to run the app on first generation devices, such iPad 1, 2.
See the Resources for the download link of the Csound resources for this text, and focus on the
EnvelopeApe UDO in the VCS3_Envelope.csd file.

To overcome this limitation, we had to implement the Envelope, 'outside of Csound' and add a new
opcode to the list of opcodes with the following Csound API:

 /* Append External Csound Opcodes */
 csoundAppendOpcode(cs, "VCS3Envelope", sizeof(VCS3ENVELOPE_OPCODE),
 0, 3, "a", "kkkkk",
 iVCS3Envelope,
 kVCS3Envelope,
 aVCS3Envelope);

At the moment the VCS3Envelope code is a simple adjustment to the language 'C' of Csound UDO
that it might to be optimized in the next iVCS3 updates.

Figure 11. Envelope re-trigger when it is at the Decay phase. The instant you re-trig the envelope with the keyboard
(or ATTACK button), it will finish the Attack phase from the current voltage value and then it will stay at full
amplitude until you release the key (or button).

Figure 12. The first gate is the same as fig. B, but now notice the second gate behaviour: since the envelope is at
full Voltage (still at hold phase) when you push the key/ATTACK, there will be not a ‘retrigger' for the Attack
but the Voltage will hold for as long as you keep the key/ATTACK pressed. Gate 3 is the same as fig A.

	
 11	

IX. Voltage to Amplitude Mapping
	

To make the emulator as close as possible to the original, all the audio signals of the various
modules have been "tuned" according to the amplitudes of the original. Using the standard digital
normalized range we have to consider the values in the range -1 to 1 and all the signals have been
amplified or attenuated according to the voltages in volts of the original VCS3.

As we can see from the figure 13 (from the original VCS3 manual), the maximum value of the AC
voltage is 6 Vp-p. Therefore the value of 'peak' is 3, since the emulator's digital audio modules
return normalized values in the range -1 to 1, the attenuation/amplification factor is calculated in
Csound as follow:

#define MAX_VOLT_REF #3.0#
instr 11 ; VCO 1
//…
 /* Max. Out. 3V p-p ossia 3/2 = 1.5V peak*/
 iampSine init 1.5 / $MAX_VOLT_REF

 /* Max. Out. 4V p-p ossia 4/2 = 2V peak */
 iampSaw init -2 / $MAX_VOLT_REF
//…
endin

For what concerns the input signals, instead:

iVoltPerOctave init -0.32 / $MAX_VOLT_REF

In the example of the VCO 1, the 0.32 value refers to the sensitivity in Volts per octave. It means
that summing 0.32 Volt at the frequency value in Volt of the VCO, we will produce a octave-up and
subtracting it we will produce an octave below. The negative sign (-0.32) is justified by the fact that
the VCA (i.e. Voltage-controlled amplifier) modules of the VCS3 produce a reverse current.
Finally, the POWEROFTWO (UDO) calculates the factor to raise/lower in frequency according to
the Volt amount.

apower POWOFTWO aControlIn/iVoltPerOctave ; 2ˆ(aControlIn/iVoltPerOctave)
acps mac kcps, apower

All of these details make the emulator very close to the original, in terms of “playability” and
feedback.

Figure 13. Original VCS3 oscillators / filter voltages (Vpp) vs.
frequency reference and sensitivity (V/octave)

	
 12	

	

X. Knobs

For the programming the Knobs, has been reserved the maximum attention to the non-linearity of
the original VCS3 machine. Every widget was designed to follow finely the curve according to the
voltages of the original that, in some cases, becomes particularly discontinuously. Since the
standard math shapes as exponential or logarithm, they could not adequately approximate the
original curve, it was decided to use the technique table look-up.
In this modus-operandi, the values of the Knobs are used as indexes of tables to 11 points, the tables
are filled at compile-time with 11 values (samples) measured on the original machine. Intermediate
values are obtained through a process of linear interpolation.
The algorithm is easily solvable in Csound environment, using the tables (gen 2) and the opcode
tablei which serve to read the interpolated values as a function of an index. However, we wanted to
keep a correspondence with the absolute values of the UI (ie user interface) and for this reason, it
was necessary to implements the feature in Objective-C.

Below, an example from the Decay Knob of the Envelope module, please observe the discontinuity
values of this parameter:

/* Real VCS3 Values for Envelope Decay */
[_Decay setTableCurve:0.007 forIndex:0];
[_Decay setTableCurve:0.010 forIndex:1];
[_Decay setTableCurve:0.028 forIndex:2];
[_Decay setTableCurve:0.116 forIndex:3];
[_Decay setTableCurve:0.425 forIndex:4];
[_Decay setTableCurve:1.600 forIndex:5];
[_Decay setTableCurve:4.400 forIndex:6];
[_Decay setTableCurve:7.500 forIndex:7];
[_Decay setTableCurve:9.500 forIndex:8];
[_Decay setTableCurve:11.000 forIndex:9];
[_Decay setTableCurve:15.00000 forIndex:10];

Therefore, the function for the interpolation calculation:

-(float)valueFromIndex:(float)phi {

 //Linear Interpolation (two points)
 short index = (short) phi;
 float dif = phi - (float) index;
 float sample1 = _tableCurve[index];
 float sample2 = _tableCurve[index + 1];
 float RESULT = sample1 + (sample2 - sample1) * dif;

 return RESULT;
}

This approach provides an additional level of optimization, in fact the interpolations are calculated
as a result of a user action on the Knob. The mechanism is known as 'event-driven programming’, a
delegate-function (callback) is called only if necessary, unlike Csound that continuously performs a
pull over the control (i.e. ‘k') variables.

	
 13	

Figura	
 14.	
 Two	
 screenshots	
 that	
 show	
 all	
 the	
 controls	
 on	
 the	
 front	
 panel	
 of	
 the	
 iVCS3.	

	
 14	

XI. Conclusions
	

The experience of emulate a vintage synth using the standard Csound opcodes (and the good
performance in terms of number of the app downloads) shows the power of Csound as an incredible
sound development tool not only for experimental and didactical purpose but also for semi-
professional and professional use.
This experience also showed again that the success of the emulation of a music machine depends in
large part from the good synergy between the various modules and control parameters, even greater
extent the exact reconstruction of each individual component. In addition, the programming style of
Csound accelerates the adaptation of the various modules to the more general context that
characterizes the environment and development tools for iOS system applications.
	

XII. Aknowledgements
	

Many thanks to LEMS (Conservatory of Music G. Rossini - Pesaro) to let us to analyze and study
in detail the behavior of a real VCS3 (1969).
Special thanks to Peter Zinovieff (the inventor of the original VCS3) for his appreciation of our
work and its valuable suggestions.
A sincere thanks to Stefano Zambon for sharing with us the guidelines of his work and experiences
on the digital emulation of the VCS3 filter. A special thanks to Josue Arias for the invaluable help
in the envelope programming and for his deeply knowledge of the EMS Synthi.
www.kimatika.com
	

References	

	

	
 [1] Tim Stilson, Julius O.Smith “Alias-Free Digital Synthesis of Classic Analog Waveforms” CCRMA [Online]
Available: https://ccrma.stanford.edu/~stilti/papers/blit.pdf
[2] Gary Scavone “Bandlimited Synthesis” MUM 307 – (2004-2015) McGill Univerity [Online]
Available: http://www.music.mcgill.ca/~gary/307/week5/bandlimited.html
[3] Richard Hoffmann-Burchardi “Asymmetries Make The Difference: An Analysis Of Transistor-Based
Analog Ring Modulators” Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy,
September 1-4, 2009 - [Online] Available: http://dafx09.como.polimi.it/proceedings/papers/paper_24.pdf
[4] Antti Huovilainen “Non-Linear Digital Implementation Of The Moog Ladder Filter” ” Proc. of the 12th Int.
Conference on Digital Audio Effects (DAFx-04), Naples, Italy, October 5-8, 2004 [Online] Available:
http://www.mirlab.org/conference_papers/International_Conference/DAFx%202004/Proc/P_061.pdf
[5] Julian Parker “Dispersive Systems in Musical Audio Signal Processing ” Doctoral Dissertation 158/2013 – Aalto
University [Online] Available: http://lib.tkk.fi/Diss/2013/isbn9789526053684/isbn9789526053684.pdf
[6] EMS VCS3 / Synthi A Emulator by Steven Cook - stevencook@appleonline.net

Additional Resources
	

VCS3 Users Manual – EMS London
The Canonical Csound Reference Manual – B. Vercoe et altri - MIT
http://karim.barkati.online.fr/cours/supports/csound/csound5_manual.pdf
R. Boulanger “The Csound Book” – MIT Press
R. Bianchini – A. Cipriani “ Il suono virtuale” – Ed. ContempoNet
E. Giordani “Stria 2.70” – from CsoundQt official synth category examples
S. Zambon – F. Fontana “Efficient Polynomial Implementation Of The EMS VCS3 Filter Model” Proc. of the 14th Int.
Conference on Digital Audio Effects (DAFx-04), Paris, France, September 19-23, 2011 [Online] Available:
http://recherche.ircam.fr/pub/dafx11/Papers/99_e.pdf
V. Lazzarini’s implementation of moogladder UDO
http://www.csounds.com/udo/cache/Moogladder.udo

The Csound resources for this text: www.alessandro-petrolati.it/cs/icsc_2015.zip

